rachunek prawdopodobieństwa dla leniwych

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA Lista nr 4 Zadanie 1. Dystrybuanta zmiennej losowej X jest zadana w poniższej tabeli. = Acosx 0 dla poza Translations in context of "dla prawdopodobieństwa" in Polish-English from Reverso Context: Ważne jest, aby pamiętać, że nadmierny stres i zamieszanie w tej drażliwej kwestii może być szkodliwe dla prawdopodobieństwa posiadania dzieci, a także przedłużającej się bezczynności. O przedmiocie Rachunek prawdopodobieństwa i statystyka. Rachunek prawdopodobieństwa lub probabilistyka to dział matematyki zajmujący się zdarzeniami losowymi. Rachunek prawdopodobieństwa zajmuje się badaniem abstrakcyjnych pojęć matematycznych stworzonych do opisu zjawisk, które nie są deterministyczne: zmiennych losowych w przypadku pojedynczych zdarzeń oraz procesów Tłumaczenie hasła ""rachunek prawdopodobieństwa"" na angielski. probability theory, probability analysis, theory of probability to najczęstsze tłumaczenia ""rachunek prawdopodobieństwa"" na angielski. Przykładowe przetłumaczone zdanie: Zastosowanie rachunku prawdopodobieństwa i teorii gier w brydżu sportowym ↔ Using probability Rachunek Prawdopodobieństwa - A A Borowkow • Książka ☝ Darmowa dostawa z Allegro Smart! • Najwięcej ofert w jednym miejscu • Radość zakupów ⭐ 100% bezpieczeństwa dla każdej transakcji • Kup Teraz! • Oferta 13416001073. nonton film india terbaru 2023 subtitle indonesia. Home Książki Informatyka, matematyka Rachunek prawdopodobieństwa dla leniwych, zbiór zadań dla uczniów szkół ponadpodstawowych i studentów Książka, powstała w wyniku wieloletniej pracy z uczniami i studentami, zawiera w czterech rozdziałach cały kurs rachunku prawdopodobieństwa w postaci zadań wraz z komentarzami, objaśnieniami i rozwiązaniami. Ostatni, piąty rozdział to wybór zadań naturalnych z 1995 roku, z różnych województw, także rozwiązanych i skomentowanych. Zamierzeniem autorów było przełożenie na język akceptowany przez uczniów tajemnic działu matematyki sprawiającego wiele trudności. Indywidualne, odbiegające od tradycyjnego, szkolnego podejście do niektórych zadań, może zainteresować uczniów klas o profilu matematyczno-fizycznym oraz studentów matematyki wyższych szkół pedagogicznych i uniwersytetów. Porównywarka z zawsze aktualnymi cenami W naszej porównywarce znajdziesz książki, audiobooki i e-booki, ze wszystkich najpopularniejszych księgarni internetowych i stacjonarnych, zawsze w najlepszej cenie. Wszystkie pozycje zawierają aktualne ceny sprzedaży. Nasze księgarnie partnerskie oferują wygodne formy dostawy takie jak: dostawę do paczkomatu, przesyłkę kurierską lub odebranie przesyłki w wybranym punkcie odbioru. Darmowa dostawa jest możliwa po przekroczeniu odpowiedniej kwoty za zamówienie lub dla stałych klientów i beneficjentów usług premium zgodnie z regulaminem wybranej księgarni. Za zamówienie u naszych partnerów zapłacisz w najwygodniejszej dla Ciebie formie: • online • przelewem • kartą płatniczą • Blikiem • podczas odbioru W zależności od wybranej księgarni możliwa jest także wysyłka za granicę. Ceny widoczne na liście uwzględniają rabaty i promocje dotyczące danego tytułu, dzięki czemu zawsze możesz szybko porównać najkorzystniejszą ofertę. papierowe ebook audiobook wszystkie formaty Sortuj: Podobne książki Oceny Średnia ocen 0,0 / 10 0 ocen Twoja ocena 0 / 10 Cytaty Powiązane treści rachunek prawdopodobieństwa - podstawowe informacje - matematyka, matura MATERIAŁ MATURALNY > prawdopodobieństwo PODSTAWOWE INFORMACJE Prawdopodobieństwo obliczamy, gdy mamy do czynienia ze zdarzeniami losowymi. Przykładem może być uzyskanie parzystej liczby oczek podczas rzutu kostką. Zdarzenie elementarne – jedno konkretne zdarzenie. Oznaczamy symbolem: Przestrzeń zdarzeń elementarnych – to zbiór wszystkich zdarzeń, jakie możemy uzyskać. Oznaczamy symbolem: Zdarzenie losowe to zbiór wszystkich zdarzeń elementarnych, spełniających dane kryterium Oznaczamy je dużą literą alfabetu (A, B, C…). Dla przykładu rzutu kostką: O wiele bardziej istotne od ustalenia elementów obu zbiorów, jest określenie ile elementów zawiera każdy z nich. Tę wartość nazywamy mocą zbioru. Podając liczbę elementów, które zawierają oba zbiory (moc zbiorów), nad symbolem przestrzeni zdarzeń elementarnych i symbolem zdarzenia losowego zapisujemy dwie poziome kreski: Prawdopodobieństwo samo w sobie nie jest trudne. Największą trudność sprawia obliczenie liczby wszystkich możliwych zdarzeń i liczby zdarzeń elementarnych spełniających dane zdarzenie losowe. Dopiero wtedy możemy obliczyć rozpatrywanego przykładu, ustalenie liczby wszystkich możliwych zdarzeń (6) i liczby zdarzeń elementarnych spełniających zdarzenie losowe (3), jest dość proste. W następnych podrozdziałach omówimy różne metody "ustalania" mocy poszczególnych zbiorów. Oblicz liczbę:(a) permutacji zbioru 5-elementowego(b) 3-elementowych wariacji bez powtórzeń ze zbioru 5-elementowego(c) 3-elementowych wariacji z powtórzeniami ze zbioru 5-elementowego(d) 3-elementowych kombinacji bez powtórzeń ze zbioru 5-elementowego(e) 3-elementowych kombinacji z powtórzeniami ze zbioru 5-elementowego Zobacz rozwiązanie >> Oblicz, ile jest liczb naturalnych trzycyfrowych, w których zapisie pierwsza cyfra jest parzysta, a pozostałe nieparzyste. Zobacz rozwiązanie >> Na ile sposobów można umieścić 3 różne kulki w 5 różnych szufladach, tak aby każda była w innej szufladzie. Zobacz rozwiązanie >> Na ile sposobów można włożyć 20 jednakowych kul do 3 szuflad, tak aby w pierwszej było 11 kul w drugiej 5 a w trzeciej 4? Zobacz rozwiązanie >> Oblicz liczbę kombinacji bez powtórzeń (symbol Newtona):(a) \(\binom{3}{2}\)(b) \(\binom{6}{6}\)(c) \(\binom{49}{6}\)(d) \(\binom{10}{1}\) Zobacz rozwiązanie >> Na Ile sposobów 7 osób jedących windą, w budynku mającym 10 pięter, może opuścić windę. Rozwiązanie widoczne po rejestracji Na ile sposobów można umieścić n różnych kul w n ponumerowanych urnach, tak aby:(a) każda kula była w innej urnie (b) dokładnie jedna urna była pusta Rozwiązanie widoczne po rejestracji Na ile sposobów można umieścić k kul w n szufladach (\(k\leq n\)), przy założeniu, że:(a) kule są rozróżnialne (ponumerowane)(b) kule są rozróżnialne (ponumerowane) i każda kula ma być w innej szufladzie(c) kule są identyczne (nierozróżnialne)(d) kule są identyczne (nierozróżnialne) i każda kula ma być w innej szufladzie Rozwiązanie widoczne po rejestracji Wykaż, że:\(V_n^k=C_n^k\cdot P_k\)gdzie \(V_n^k\) to k-elementowe wariacje bez powtórzeń zbioru n-elementowego, \(C_n^k\) to liczba k-elementowych kombinacji bez powtórzeń zbioru n-elementowego, a \(P_k\) to liczba permutacji zbioru k-elementowego. Rozwiązanie widoczne po rejestracji Wyznacz liczbę elementów zbioru A, dla którego liczba permutacji jest 15 razy mniejsza niż liczba permutacji zbioru do którego dodano jeden element Rozwiązanie widoczne po rejestracji Dla zbioru \(\{a,b,c\}\) wypisać wszystkie:(a) permutacje(b) wariacje bez powtórzeń(c) wariacje z powtórzeniami(d) kombinacje bez powtórzeń(e) kombinacje z powtórzeniami Rozwiązanie widoczne po rejestracji Na ile sposobów można wybrać z 20-osobowej klasy:(a) delegację złożoną z 3 osoób(b) przewodniczącego, jego zastępcę oraz skarbnika Rozwiązanie widoczne po rejestracji Ile jest rozmieszczeń elementów zbioru n-elementowego, w których:(a) danych k-elementów stoi jeden obok drugiego (k elementów twrozy jeden blok)(b) danych k-elementów nie stoi jeden obok drugiego (k elementów nie tworzy jednego zwartego bloku)(c) żadne dwa elementy spośród danych k elementów nie stoją jeden obok drugiego Rozwiązanie widoczne po rejestracji Na ile sposobów można ustawić w szeregu sześć kobiet i sześciu mężczyzn tak, aby żadne dwie osoby tej samej płci nie stały obok siebie? Rozwiązanie widoczne po rejestracji Z talii 52 kart losowo wybieramy 5. Oblicz prawdopodobieństwo, że wszystkie karty będą czarne. Zobacz rozwiązanie >> Jakie jest prawdopodobieństwo wylosowania liczby podzielnej przez 4 ze zbioru liczb \(\{1,2,3,4,5,6,7,8,9,10,11\}\). Zobacz rozwiązanie >> Obliczyć prawdopodobieństwo, że rzucając symetryczną kostką do gry otrzymamy parzystą liczbę oczek. Zobacz rozwiązanie >> Obliczyć prawdopodobieństwo, że rzucając dwukrotnie symetryczną kostką do gry otrzymamy dwa razy liczbę 6. Zobacz rozwiązanie >> W teleturnieju gracz ma wybór między 3 bramkami. W jednej z bramek jest samochód, w pozostałych dwóch są koty w worku. Prowadzący teleturniej wie, w której bramce jest samochód. Gracz wskazuje jedną z bramek, wtedy prowadzący otwiera jedną z pozostałych dwóch bramek, tą w której jest kot w worku. Prowadzący pyta gracza, czy chce zmienić bramkę. Gracz wygrywa, gdy wskaże bramkę, która kryje samochód. Załóżmy, że gracz na początku gry wybrał bramkę nr 1, a prowadzący otworzył bramkę nr 3 z kotem w worku. Czy graczowi opłaca się zmienić wybór i wskazać bramkę nr 2? Uzasadnij odpowiedź obliczając odpowiednie prawdopodobieństwa. Zobacz rozwiązanie >> Rzucamy sześcienną kostką do gry. Oblicz prawdopodobieństwo warunkowe otrzymania liczby oczek większej od 3 pod warunkiem, że liczba oczek jest parzysta. Zobacz rozwiązanie >> W urnie jest 11 kul białych, 10 kul czarnych i 9 kul niebieskich. Korzystając z klasycznej definicji prawdopodobieństwa oblicz:(a) prawdopodobieństwo wylosowania kuli białej(b) prawdopodobieństwo wylosowania kuli czarnej(c) prawdopodobieństwo wylosowania kuli niebieskiej lub czarnej Zobacz rozwiązanie >> Mamy dwie kostki go gry, z których jedna jest idealnie symetryczna i wyważona, tak, że wszystkie wyniki są jednakowo prawdopodobne. Druga kostka jest krzywa, tak, że prawdopodobieństwo wyrzucenia na niej 6 wynosi \(\frac{1}{5}\). Losowo wybrano jedną z dwóch kostek i wykonano nią dwa rzuty otrzymując dwie szóstki. Jakie jest prawdopodobieństwo, że rzucano krzywą kostką? Rozwiązanie widoczne po rejestracji Pewna rodzina ma dwójkę dzieci. Oblicz prawdopodobieństwo, że wszystkie dzieci są chłopcami pod warunkiem, że przynajmniej jedno dziecko jest chłopcem. Rozwiązanie widoczne po rejestracji W urnie jest 9 kul: 4 białe i 5 czarnych. Wybieramy losowo bez zwracania 2 kule. Wyznacz prawdopodobieństwo warunkowe tego, że druga wylosowana kula będzie czarna pod warunkiem, że pierwsza wylosowana kula była biała Rozwiązanie widoczne po rejestracji W urnie jest 9 kul: 4 białe i 5 czarnych. Wybieramy losowo 2 kule. Wyznacz prawdopodobieństwo, że obie kule będą białe, gdy:(a) losujemy kule bez zwracania(b) losujemy kule ze zwracaniem (losujemy pierwszą, zapisujemy jaki ma kolor i wrzucamy do urny) Rozwiązanie widoczne po rejestracji Mamy zbiór \(n\in\mathbb{N}\) elementów, wśród których \(m\leq n\) ma cechę C. Wybieramy losowo 2 elementy. Wyznacz prawdopodobieństwo, że oba wylosowane elementy będą miały cechę C, gdy:(a) losujemy elementy bez zwracania(b) losujemy elementy ze zwracaniem (losujemy pierwszy, zapisujemy czy ma cechę C i wrzucamy do urny) Rozwiązanie widoczne po rejestracji Przestrzeń \(\Omega\) zawiera 6 zdarzeń elementarnych \(\{\omega_1,\omega_2,\omega_3,\omega_4,\omega_5,\omega_6\}\). Niech \(A=\{\omega_1,\omega_3,\omega_5\}\) i \(B=\{\omega_2,\omega_3,\omega_6\}\). Wyznaczyć zdarzenia:(a) \(A\cup B\)(b) \(A\cap B\)(c) \(A\setminus B\)(d) \(B\setminus A\)(e) \(A^c\)oraz oblicz prawdopodobieństwa klasyczne wszystkich powyższych zdarzeń. Rozwiązanie widoczne po rejestracji Z talii 52 kart losowo wybieramy 5. Oblicz prawdopodobieństwo, że wśród kart będzie dokładnie jedna para. Rozwiązanie widoczne po rejestracji Własności prawdopodobieństwa Prawdopodobieństwo dowolnego zdarzenia losowego \(A\) jest zawsze liczbą z przedziału \(\langle 0; 1 \rangle\). \[0\le P(A)\le 1\] Prawdopodobieństwo zdarzenia pewnego jest równe \(1\). \[P(\Omega )=1\] Prawdopodobieństwo zdarzenia niemożliwego jest równe \(0\). \[P(\emptyset )=0\] Przydatne wzory Prawdopodobieństwo zdarzenia przeciwnego: \[P(A')=1-P(A)\] Prawdopodobieństwo sumy zdarzeń \[P(A\cup B)=P(A)+P(B)-P(A\cap B)\] Prawdopodobieństwo warunkowe Prawdopodobieństwo warunkowe zajścia zdarzenia \(A\) pod warunkiem zajścia zdarzenia \(B\) liczymy ze wzoru: \[P(A|B)=\frac{P(A\cap B)}{P(B)}\] gdzie \(P(B)>0\) Prawdopodobieństwo całkowite Jeżeli zdarzenia \(B_1, B_2, ..., B_n\) są parami rozłączne oraz mają prawdopodobieństwa dodatnie, które sumują się do jedynki, to dla dowolnego zdarzenia \(A\) zachodzi wzór: \[P(A)=P(A|B_1)\cdot P(B_1)+P(A|B_2)\cdot P(B_2)+...+P(A|B_n)\cdot P(B_n)\] Wzór Bayesa Jeżeli zdarzenia \(B_1, B_2, ..., B_n\) są parami rozłączne oraz mają prawdopodobieństwa dodatnie, które sumują się do jedynki, to dla dowolnego zdarzenia \(A\) zachodzi wzór: \[P(B_k|A)=\frac{P(A|B_k)\cdot P(B_k)}{P(A)}\] Schemat Bernoulliego W schemacie Bernoulliego prawdopodobieństwo uzyskania \(k\) sukcesów w \(n\) próbach można obliczyć ze wzoru: \[P_n(k)=\binom{n}{k}p^k(1-p)^{n-k}\] gdzie \(p\) - to prawdopodobieństwo sukcesu w jednej próbie I. Doświadczenia losowe Rachunek (teoria) prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest losowe, jeżeli: - można je wielokrotnie powtarzać w tych samych warunkach, - wyniku doświadczenia nie potrafimy z góry przewidzieć. Jako przykłady takich doświadczeń podaje się zwykle rzuty monetą lub kostką do gry, kupno losu na loterii, karty jakie można otrzymać w rozdaniu pokera itp. II. Przestrzeń zdarzeń elementarnych Wyniku danego doświadczenia losowego nie potrafimy przewidzieć, ale możemy podać (lub opisać) zbiór, do którego należy. Zbiór ten tradycyjnie oznacza się literą . nosi nazwę przestrzeni zdarzeń elementarnych, a jej elementy oznacza się literami i nazywa zdarzeniami elementarnymi. W szkolnym rachunku prawdopodobieństwa przestrzeń jest zwykle zbiorem o skończonej liczbie elementów: Przykłady 1. Jednokrotny rzut monetą. Możliwymi wynikami w tym doświadczeniu są dwa zdarzenia elementarne: wyrzucenie orła lub wyrzucenie reszki . Opisując to doświadczenie przyjmujemy: 2. Jednokrotny rzut kostką. W tym doświadczeniu: gdzie to liczba wyrzuconych oczek. 3. Dwukrotny rzut monetą lub równoczesny rzut dwiema różnymi monetami, np. złotówką i dwuzłotówką. Teraz każde to uporządkowana para: (wynik pierwszego rzutu, wynik drugiego rzutu) lub (wynik na złotówce, wynik na dwuzłotówce) lub krócej 4. Dwukrotny rzut kostką do gry lub równoczesny rzut dwiema kostkami np. czerwoną i zieloną. Teraz każde to uporządkowana para: (liczba oczek w pierwszym rzucie, liczba oczek w drugim rzucie) lub (liczba oczek na kostce czerwonej, liczba oczek na kostce zielonej). W tym doświadczeniu zdarzenia elementarne ustawia się zwykle w tablicy o sześciu wierszach i kolumnach. 5. Rozdania kart w brydżu. Każdy z czterech graczy otrzymuje po 13 kart z talii 52 kart. Przestrzeń zdarzeń elementarnych tworzą podziały zbioru 52 kart na 4 zbiory po 13 kart. Liczba takich podziałów jest olbrzymia, III. Zdarzenia Rzadko interesuje nas pojawienie się w danym doświadczeniu losowym konkretnego Częściej chodzi o to, czy należy do określonego podzbioru przestrzeni Np. czy w jednokrotnym rzucie kostką wypadła parzysta liczba oczek. Zdarzeniem nazywamy dowolny podzbiór przestrzeni zdarzeń elementarnych . Zdarzenia oznaczamy początkowymi dużymi literami alfabetu A, B, C, ... i opisujemy je słowami poprzedzając myślnikiem. Np. gdy A - wypadła parzysta liczba oczek, A = {2,4,6}, B - wypadła liczba oczek nie większa niż 4, B = {1,2,3,4}, C - wypadła szóstka, C = {6}. Jeżeli wynikiem doświadczenia jest oraz to mówimy, że zaszło zdarzenie A oraz że sprzyja zdarzeniu A. Podzbiorami są też: - zbiór pusty przedstawiający zdarzenie niemożliwe (np. w jednym rzucie kostką wypadło 7 oczek lub jeden z graczy w brydża otrzymał wśród 13 kart dwie damy kier), - cała przestrzeń przedstawiająca zdarzenie pewne (każde ). Zdarzenie nazywamy zdarzeniem przeciwnym do A. Jeżeli , to i zachodzi zdarzenie przeciwne do A. A' to zbiór tych , które nie sprzyjają A. Zdarzeniem przeciwnym do jest i odwrotnie. IV. Działania na zdarzeniach Gdy dopuszczamy dwa zdarzenia A i B, to możemy interesować się tym, czy te dwa zdarzenia zachodzą równocześnie lub czy zaszło przynajmniej jedno z nich. nazywamy koniunkcją zdarzeń A i B (,,A i B"). O zdarzeniach A i B takich, że mówimy, że wykluczają się. nazywamy alternatywą zdarzeń A i B (,,A lub B"). Jeżeli , to zajście zdarzenia A pociąga za sobą B. Czasami o zdarzeniach wyrażamy się w terminach teorii zbiorów (iloczyn, suma, dopełnienie), zamiast w terminach rachunku prawdopodobieństwa. V. Definicja prawdopodobieństwa Model klasyczny (klasyczna definicja prawdopodobieństwa) Jeżeli w pewnym doświadczeniu losowym wszystkie wyniki są jednakowo prawdopodobne, to prawdopodobieństwo zdarzenia A określamy wzorem: Model klasyczny pasuje do wielu zdarzeń, gdzie występują symetryczne monety lub kości do gry, karty, losy na loterii itp. Model uogólniony Model ten stosujemy, gdy nie wszystkie zdarzenia elementarne są jednakowo prawdopodobne. VI. Podstawowe własności prawdopodobieństwa 1. Prawdopodobieństwo zdarzenia niemożliwego jest równe zero: 2. Prawdopodobieństwo zdarzenia pewnego jest równe jedności: 3. Prawdopodobieństwo zdarzenia przeciwnego do A wyraża się wzorem: Warto to zapamiętać. Czasem łatwo jest obliczyć P(A') podczas, gdy obliczenie P(A) jest kłopotliwe. Np. rzucamy 10 razy symetryczna monetą, A - wypadł orzeł przynajmniej jeden raz. Wtedy A' - wypadły same reszki. i 4. Dla każdego zdarzenia A: 5. Jeżeli zdarzenia A i B nie mogą zajść równocześnie, tzn. wykluczają się, to: 6. Jeżeli zdarzenie A pociąga za sobą zdarzenie B, czyli to: 7. Prawdopodobieństwo sumy zdarzeń ,,A lub B": Stąd wniosek, że , a równość tylko w sytuacji takiej jak w pkt 5. VII. Prawdopodobieństwo warunkowe Jest to podstawowe pojęcie teorii prawdopodobieństwa - chodzi o to, że zajście jakiegoś zdarzenia może zmienić prawdopodobieństwa zajścia innego zdarzenia. Prawdopodobieństwem warunkowym zajścia zdarzenia A pod warunkiem, że zaszło zdarzenie B (P(B) > 0), nazywamy liczbę Jeżeli wiemy, że zaszło zdarzenie B, to ograniczamy się do zdarzeń elementarnych sprzyjających B (jest to nowa przestrzeń zdarzeń) oraz tych które należą do części wspólnej (sprzyjają A i B). Przykłady 1. Rzucono 3 razy monetą i wypadła nieparzysta liczba orłów (zdarzenie B). Jakie jest prawdopodobieństwo, że wypadły 3 orły (zdarzenie A)? . Można było też zastosować wzór: , , , , 2. Rzucono 2 razy kostką do gry i w pierwszym rzucie wypadło 6 oczek (zdarzenie B). Jakie jest prawdopodobieństwo, że w obu rzutach wypadnie co najmniej 10 oczek (zdarzenie A)? Zastosujmy wzór Z przykładu 4 w pkt. II (tablica) wiemy, że Teraz prościutko stosując wzór Ze wzoru mamy wzór na prawdopodobieństwo iloczynu zdarzeń: Korzystając z tego można pójść dalej itd. Wzory te pojawią się, gdy będziemy opisywali metodę drzew. VIII. Prawdopodobieństwo całkowite Rodzinę zdarzeń , które wzajemnie się wykluczają, a ich suma daje nazywamy zupełnym układem zdarzeń. Formalnie oznacza to, że czyli zachodzi dokładnie jedno ze zdarzeń Mówimy też, że rodzina taka stanowi rozbicie przestrzeni . Na diagramie wygląda to np. tak Weźmy teraz dowolne zdarzenie A. Umieszczamy je na powyższym diagramie. Widać, że: Wszystkie zdarzenia są rozłączne. Z rozdziału II pkt. 5, wynika, że Stosując wzór na prawdopodobieństwo iloczynu zdarzeń otrzymujemy: Ogólnie, jeżeli stanowi układ zupełny zdarzeń to Uwaga. Zdarzenie B i do niego przeciwne B' stanowią rozbicie przestrzeni W takim razie IX. Niezależność zdarzeń Zdarzenia A i B nazywamy niezależnymi, jeżeli Jeżeli A i B są niezależne to wg tej definicji: a to oznacza, że zdarzenie B nie ma wpływu na prawdopodobieństwo zdarzenia A. Uwaga. Jeżeli zdarzenie A i B są niezależne, to niezależne są też zdarzenia: A i B’, A’ i B, A’ i B’. X. Schemat Bernoulliego Rozważmy skończony ciąg niezależnych powtórzeń tego samego doświadczenia o dwóch możliwych wynikach. Poszczególne zdarzenia z tego ciągu nazywamy próbami Bernoulliego. Jeden z dwóch wyników nazywamy tradycyjnie sukcesem, a drugi porażką. Oznaczamy prawdopodobieństwo sukcesu jako a prawdopodobieństwo porażki Niezależność prób polega na tym, że dowolny wynik jednej próby nie wpływa na prawdopodobieństwo pojawienia się każdego z wyników w następnej próbie. Schematem n prób Bernoulliego nazywamy ciąg niezależnych powtórzeń tej samej próby Bernoulliego. Przykłady schematu prób Bernolulliego 1. -krotny rzut symetryczną monetą, za sukces możemy przyjąć wypadnięcie orła a porażka jest wypadnięcie reszki 2. badanie urządzeń, gdy interesuje nas czy są one sprawne czy wadliwe, sukces to ,,urządzenie jest sprawne", 3. -krotny rzut symetryczną kostką, gdy za sukces uważamy wypadnięcie szóstki , 4. kupno losów na loterii, gdy los jest wygrany (sukces) lub pusty (porażka). Oznaczmy przez liczbę sukcesów w schemacie prób Bernouliiego. Prawdopodobieństwo zajścia sukcesów w schemacie prób Bernoulliego , z prawdopodobieństwem sukcesu w jednej próbie , wynosi Przykłady 1. Rzucamy 6 razy symetryczną kostką do gry. Oblicz prawdopodobieństwo zajścia: a) zdarzenia A - otrzymano jedną szóstkę, b) zdarzenia B - otrzymano najwyżej dwie szóstki, c) zdarzenia C - otrzymano co najmniej jedną szóstkę. a) b) , gdzie - otrzymano 0, 1, 2 szóstki. Zdarzenia te wykluczają się. Stąd dalej wynika, że c) Zdarzeniem przeciwnym do C jest C' - nie wypadła ani jedna szóstka. Stąd XI. Drzewa Teraz będzie o metodzie, która nadaje się do doświadczeń realizowanych w dwóch lub więcej etapach. Takimi są np. - często występujące z zadaniach - losowanie kolejno kul z urny, rzuty monetą lub kostką, ciągnięcie kart z talii itp. oraz złożenie kolejno tych doświadczeń. Przykład takiego (problemu) doświadczenia. Mamy dwie urny. W pierwszej są 2 kule białe i 3 czarne, a w drugiej 3 białe i 1 czarna. Rzucamy kostką i jeżeli wypadnie szóstka, to ciągniemy kulę z urny I, w przeciwnym przypadku ciągniemy z urny II. Jakie jest prawdopodobieństwo, że wyciągniemy kulę białą? W metodzie drzew rysujemy diagram, który daje przejrzystość rozwiązania. Z rysunku widać co trzeba pomnożyć i ewentualnie potem dodać, aby mieć szukane prawdopodobieństwo - to coś dla leniwych! Diagram nazywamy drzewem. Drzewo zaczyna się początkiem (korzeniem), który zaznacza się kropką lub kółkiem. Z korzenia wychodzą w dół odcinki zwane krawędziami, w takiej liczbie ile jest różnych wyników w pierwszym etapie (np. trzy). Pod krawędziami piszemy wyniki pierwszego etapu, są to węzły drzewa. Obok każdej krawędzi piszemy prawdopodobieństwo otrzymania danego wyniku. W przykładzie etap I może kończyć się wynikami o prawdopodobieństwach Przyjmijmy, że w etapie II mogą wystąpić dwa wyniki B i C. Rysujemy drzewo dalej. Z każdego węzła kończącego pierwszy etap wychodzą po dwie krawędzie kończące się zdarzeniami B i C. Ciąg krawędzi łączący początek z jakimś węzłem końcowym to gałąź drzewa. Jedna z możliwych gałęzi jest - na rysunku wyżej - oznaczona grubszą linią. Jakie prawdopodobieństwo przypisać krawędzi łączącej ? Oczywiście to prawdopodobieństwo zdarzenia B, gdy w pierwszym etapie zaszło zdarzenie Pomnóżmy prawdopodobieństwa przypisane krawędziom pogrubionej gałęzi Jest to - oczywiście, zaszły zdarzenia . Na koniec spytajmy, jak z drzewa odczytać prawdopodobieństwo, że zaszło zdarzenie B? Jest to suma prawdopodobieństw przypisanych gałęziom kończących się w węzłach B. . No i mamy po prostu wzór na prawdopodobieństwo całkowite. Można było nie rysować drzewa, a posłużyć się tym wzorem. Podsumujmy krótko. zaczynamy od korzenia rysując krawędzie w dół, krawędzie to odcinki zaczynające się i kończące w węzłach oraz idące zawsze w dół, węzły to zdarzenia kończące etapy doświadczenia, gałąź to ciąg krawędzi od korzenia do zdarzenia w ostatnim etapie, prawdopodobieństwo odpowiadające gałęzi jest iloczynem prawdopodobieństw krawędzi, z których się ona składa. Rozwiązanie podanego wcześniej przykładu Oznaczamy zdarzenia: A - na kostce wypadło 6 oczek, A' - na kostce nie wypadło 6 oczek, B - wyciągnięto kulę białą, B' = C - wyciągnięto kule czarną. , lub inaczej Jeszcze jeden przykład W urnie jest 7 kul białych i 3 czarne. Losujemy z niej kolejno dwie kule. Jakie jest prawdopodobieństwo, że druga wylosowana kula jest czarna? Urna przed losowaniem: Oznaczamy zdarzenia: - w pierwszym losowaniu wyciągnięto kulę białą, - w pierwszym losowaniu wyciągnięto kulę czarną, - w drugim losowaniu wyciągnięto kulę białą, - w drugim losowaniu wyciągnięto kulę czarną. XII. Wzór Bayesa Problem polega na tym, że znamy wynik doświadczenia, a pytamy o jego przebieg. Typowe przykłady 1. Wśród 10 monet jedna ma orły po obu stronach. Wybieramy losowo jedną monetę, rzucamy 5 razy i wypada 5 orłów. Jakie jest prawdopodobieństwo, że jest to moneta z orłami po obu stronach? 2. Pewne urządzenia są sprowadzane od 3 dostawców A,B,C, w następujących ilościach: 50%, 20% i 30%. Wadliwość urządzeń: od dostawcy A - 1%, B - 2%, C - 3%. Wybrane urządzenie okazało się wadliwe. Jakie jest prawdopodobieństwo, że pochodzi ono od dostawcy A? Wzór Bayesa Niech zdarzenia B1,B2, ... ,Bn tworzą zupełny układ zdarzeń (tworzą podział przestrzeni ). Niech A będzie dowolnym zdarzeniem takim, że P(A)>0. Wtedy dla każdego i mamy gdzie (wg wzoru na prawdopodobieństwo całkowite) Np. na diagramie Prawdopodobieństwo zdarzenia pod warunkiem, że zaszło zdarzenie A. Rozwiązanie przykładu 1. Oznaczamy i opisujemy zdarzenia: A - w 5 rzutach wypadło 5 orłów, B1 - rzucono monetą prawidłową, B2 - rzucono monetą z dwoma orłami. B1 i B2 tworzą zupełny układ zdarzeń, , bo moneta nie może mieć jednocześnie na obu stronach orła i reszkę oraz dwa orły, a poza B1 i B2 innych możliwości nie ma. gdyż dziewięć z dziesięciu monet jest prawdziwych, a jedna ma dwa orły. - prawdopodobieństwo, że wypadło 5 orłów w 5 rzutach, gdy rzucano monetą prawidłową. Mamy tu 5 sukcesów w schemacie 5 prób Bernoulliego z prawdopdobieństwem sukcesu więc bo rzucając monetą z dwoma orłami zawsze dostajemy orła. Drzewo dla tego doświadczenia Trzeba policzyć prawdopodobieństwo zdarzenia B2 (moneta z dwoma orłami) pod warunkiem, że zaszło A Krótko - trzeba narysować drzewo i iloczyn prawdopodobieństw odpowiadających pogrubionej gałęzi podzielić przez , ... Tak rozwiążemy przykład 2. Oznaczamy i opisujemy zdarzenia: D - urządzenie jest wadliwe, A - urządzenie kupiono od dostawcy A, B - urządzenie kupiono od dostawcy B, C - urządzenie kupiono od dostawcy C. W języku rachunku prawdopodobieństwa, jeżeli urządzenie jest wybierane losowo, to Jeżeli urządzenie pochodzi od dostawcy A, to prawdopodobieństwo, że jest wadliwe i odpowiednio Drzewo dla tego doświadczenia Czyli prawdopodobieństwo, że wadliwe urządzenie pochodzi od dostawcy A wynosi 0,28 (28%).

rachunek prawdopodobieństwa dla leniwych